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Eé;’] Multimodality in healthcare systems

— Multimodality in healthcare systems refers to the utilization of different data types with
different representational modes

— As medical and health data become increasingly diverse, integrating multiple
modalities can offer several advantages:

- Enhanced Accuracy: Combining information from various sources allows for more accurate information
extraction and inference

- Reduced Bias: Multimodal approaches help mitigate bias by considering multiple perspectives

- Holistic Representation: By integrating multimodal data, healthcare systems create a holistic representation
of physical, medical, or societal processes. This comprehensive view enables better decision-making,
diagnosis, and treatment planning
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g Various data modalities in healthcare

Actionable insights ->

Informed decision making, prediction of future outcomes,
personalized treatment plans, predictions of disease progression,
identification of risk factors

Wisdom

Connections between patients,
Knowledge diseases, medical treatments ->
Patterns, trends, correlations

Fusic Processing, organization ->
Information Meaningful and contextualized

information

Sources of raw data
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g Generic framework of multimodal analysis and fusion

Ethical Considerations and Governance
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Figure 1. lllustration of different levels of fusion.

University of Oulu

https://doi.org/10.1080/24725854.2021.1987593



\lz

i

Another grouping of multimodal fusion techniques

F I{ . .
SeeI:::;:n Rule-based Systems Machine Learning Deep Learning Natural Language Processing

Interpretability and
Explainability [62,63,
104,105]

Knowledge
Level

Explanation and
Transparency [72,73]

Clinical Natural Language Patient Risk

Understanding [121,122]

Assessment [119,120]

Expert Knowledge
Incorporation [74,75]

Adverse Event
Detection
[117,118]

Integration with
Clinical Knowledge
[106,107]

Continuous Learning
and Adaptation [76]

Clinical Decision
Support Systems
[115,116]

Information Ensemble Learning Adaptive Weights
9 Combination [85,86]

Canonical Correlat
Analysis [92,93]

Multiple Kernel
Learning [89]

Manifold Learning

[94]

Information
raction [1

Text Classification

and Sentiment

Analysis [111,112]

Validation [60,61]

Evaluation and

Attention Generative Models \
Mechanisms [98,99] [100,
- Transfer Learning and
EeRBLSIon Pretrained Models
ectures [94,95] [96,97]

Sequential
Temporal Modelling
[102,103]

Multimodal
Representation
Learning [92,93]

Multiple Kernel
Learning [84]

Data Level

Cross-Model
Feature Selection
[56,57]

Unimodal Feature
Selection [53,54]

Multimodal Rule
Integration [67,68]

Rule Definition
[58,59]

Modality-Specific
Feature Selection
[55]

Rule-based
Feature Selection
[62]

Integration of
Feature Selection
& Fusion [58,59]

Textual Data
Processing
[108,109]

Feature-level
Fusion [90,91]

Rule Prioritization
and Conflict
Resolution [71]

Text-to-Image
Fusion [113,114]
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E‘JE;’] Examples of applications

Table 1. Examples of multimodal tasks.

Modalities Article Overview

Images, time series, (1] Prediction of Alzheimer's disease based on magnetic resonance imaging and positron emissian tomography (images) that are performed multiple times on one patient
and tabular within specified periods of time (time series). Patient demographics and genetic data are also taken into account (tabular).

Audio, video, and [12] Behavioral analysis and emotion and stress prediction. Analyzed data consist of 45-min recordings of students during the final exam period. They are recorded with the
event streams use of cameras (video), thermal physiological measurements of the heart, breathing rates (event sireams), and lapel microphones (audio).

Text and images [13] CQuestion answering based on images containing some textual data.

Images, text, and (1415 16] OutfitYmovie recommender systems. Movies are recommended based on plot (text), poster (image), liked and disliked movies, and cast (graphs). Ouffits are chosen
graphs Y based on product features in images and text descriptions.

https://doi.org/10.3390/s23052381 University of Oulu
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collecting health data
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Figure 2. General architecture of IOMT systems.

Internet of Medical Things: wearable devices for
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Multimodal analysis of physiology during
movement: motion sensors, ECG, respiration
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Multimodal affective computing: emotion
recognition: facial expressions, voice, EEG, ECG
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MREG imaging, multichannel EEG
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Detecting neural avalances in the brain in epilepsy:
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g Cardiac data analytics: heart beat from ECG and

video camera
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g Future directions and challenges

— Predictive / Preventive / Personalized / Participatory healthcare

— Reliability of data analysis in every-day situations

— Context drifting

— Explanatory / interpretable Al

— Missing modalities (imputation techniques)

— Discordance / noncommensurability issues between modalities

— Measurement noise, data quality issues

— Varying confidence levels of modalities

— Multimodal data collection, data augmentation, labeling challenges

— Privacy and security, availability of data sources for modeling and analytics

— Wearable sensor issues: battery life, computational capacity, memory, data transfer,
calibration, body-area networking, ...
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Thank you for your attention!

E-mail: tapio.seppanen@oulu.fi
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