

Quantum Safe Encryption Technologies

Visa Vallivaara Senior Scientist Applied Cryptography

Overview

- Quantum Computing
- Post-Quantum Cryptography (PQC)
- Standardization of PQC by NIST
- PQC Finland
- Quantum Communication
- Summary

Quantum Computing

Bits and Qubits

Character	ASCII code	Binary code
null character	0	0000000
а	97	1100001
b	98	1100010
с	99	1100011
А	65	1000001
В	66	1000010
С	67	1000011
%	37	0100101
+	43	0101011
0	48	0110000
1	49	0110001
Delete	127	1111111

15/03/2024 VTT – beyond the obvious

VTT

Computational Problems

© John Preskill

Quantum Threat

- The research of quantum-computers is advancing fast
- One of the most pressing cyber security challenges is to make existing systems quantum-safe
- Current public key cryptography is based on math problems which can be broken with an effective quantum computer
- Adversary can store full communication today and later decrypt all with cryptographically relevant quantum computer
- Effective quantum computers don't exist yet, but your secrets do

Impact on Cryptography

- Current public key cryptography is based on three different mathematical problems:
 - Factoring, discrete logarithm in finite fields and in elliptic curves
- Shor's algorithm on a suitable quantum computer will break these
 - RSA, DSA, DH and their ECC variants, ECDSA and ECDH
- Communication data is harvested today, stored, and later decrypted
- Typical applications (e.g. TLS) combine an asymmetric key agreement and symmetric encryption
- Every organization is affected

Post-Quantum Cryptography (PQC)

VTT

Post-Quantum Cryptography

- PQC is based on different mathematical problems
- Lattice, code-based and hash-based
- Larger keys and/or signatures/ciphertexts than current PKI
- Most of these cannot be simply plugged in on existing systems and protocols
- Need for rethinking the systems and careful planning on which algorithms work best in different use cases

Expert estimates of the likelihood of a quantum computer breaking RSA-2048 in 24 hours (different time frames)

2023 OPINION-BASED ESTIMATES OF THE CUMULATIVE PROBABILITY OF A DIGITAL QUANTUM COMPUTER ABLE TO BREAK RSA-2048 IN 24 HOURS, AS FUNCTION OF TIMEFRAME

Estimates of the cumulative probability of a cryptographically-relevant quantum computer in time: range between average of an optimistic (top value) or pessimistic (bottom value) interpretation of the estimates indicated by the respondents, and mid-point. [*Shaded grey area corresponds to the 25-year period, not considered in the questionnaire.]

Source: Global Risk Institute 2023

ര

copyrigh

Biden Signs Post-Quantum Cybersecurity Guidelines Into Law

The new law holds the US Office of Budget and Management to a road map for transitioning federal systems to NIST-approved PQC.

Karen Spiegelman

Features Editor

December 22, 2(

benefit Classical When ?

KATHOLIEKE UNIVERSITEI

Use the formula

2024 + Q − x −y,

Why already 2024?

where Q is # of years to first large scale quantum computerx is # of years it takes to switch algorithms in your industry (3-12 years)

y is # of years data needs to be **confidential**

So for example Q = 20, x = 5 and y = 15 means you need to start to prepare today!

Thanks to prof. Bart Preneel for the formula! (https://twitter.com/AnomalRoil/status/1192463323104763904?s=20)

Standardization of PQC by NST National Institute of Standards and Technology U.S. Department of Commerce

NIST PQC Standardization

- NIST started the standardization of PQC 2017
 - Dec 2017 Round 1 started with 69 accepted submissions
 - Jan 2019 Round 2 continued with 17 KEM and 9 signature candidates
 - July 2020 Round 3 divided to finalists (4 KEM + 3 Sig) plus 8 alternates
 - July 2022 Announcing 4 candidates to be standardized, plus round 4 candidates
 - April 10-12, 2024 5th PQC Standardization Conference

Attacks after 2rd Round

- NOV 2020 GEMSS ATTACK
 - Improved Key Recovery of the HFEv- Signature Scheme
 - All parameters sets fall below claimed security levels
- FEB 2022 RAINBOW ATTACK
 - "Breaking rainbow takes a weekend on a laptop" (Level 1)
- APR 2022 ATTACK ON STRUCTURED LATTICE SCHEMES
 - Lattice Reduction Meets Key-Mismatch
 - Relevant to Kyber, Saber, Dilithium and likely NTRU
- APR 2022 ATTACK ON SPHINCS+ (Fixed)
 - Breaking Category Five SPHINCS+ with SHA-256

Algorithms to be Standardized

Public-Key Encryption/KEMs

CRYSTALS-KYBER

Digital Signatures

- CRYSTALS-Dilithium
- FALCON
- SPHINCS+

PQC Fourth Round Candidates

- Key-Establishment Mechanisms (KEMs)
 - BIKE
 - Classic McEliece
 - HQC
 - SIKE(Broken)
- NIST requested additional (quantum-resistant) digital signature proposals to be considered in the PQC standardization process
 - Schemes that are not based on structured lattices are of greatest interest

Detailed Crypto overview

	Features			Speed			Memory		
	QUANTUM- SAFE?	STANDARD- ISED	CONFIDENCE ¹	KEY GEN	ENCRYP- TION/ SIGNING	DECRYP- TION/ VERI- FICATION	PUB KEY	PRIV KEY	CIPHERTEXT/ SIGNATURE
RSA (KE)									
Elliptic-curve (KE)									
CRKYBER(KE)									
FrodoKEM (KE)									
McEliece (KE)									
BIKE (KE)									
HỘC (KE)									
CRDILITHIUM (DSS)									
FALCON (DSS)									
SPHINCS+ (DSS)									

Strengths and weaknesses of various traditional as well as post-quantum primitives.

PQC Finland

PQC Finland project

- Post-Quantum Cryptography project: <u>www.pqc.fi</u>
- A Co-Innovation project funded by Busines Finland
- Duration: 1.1.2020-30.6.2022, Budjet: 6M€
- Research: VTT, Aalto- and Helsinki University
- Industry: SSH, Bittium, Insta, Sectra, Advenica and Tosibox; important security companies applying PQC in their solutions
- In steering group: Traficom, DVV and Defence Forces; important government stakeholders related to national security
- There was close collaboration with NIST through research exchange

PQC Finland Consortium

..... SSH.COM

INSTA

TOSIBOX®

Bíttíum

SECTRA

DIGI-JA

VIRASTO

VÄESTÖTIETO-

Puolustusvoimat The Finnish Defence Forces

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Aalto-yliopisto

Policy brief

- <u>"Kvanttiturvalliset salausmenetelmät</u> <u>Suomessa</u>", Latvala, Vallivaara and Mellin
- Published 16.9.2022
- Introduction to quantum threat, pqc advices and good practices for decision makers
- The current state and future preparedness of quantum-safe encryption methods in Finland.

Kvanttiturvalliset salausmenetelmät Suomessa

Implementing PQC

- Master thesis -> conference paper -> journal paper by Julius Hekkala.
- "Implementing Post-quantum Cryptography for Developers", Hekkala, Muurman, Halunen, Vallivaara, in SN Computer Science
- We integrated and tested three lattice-based post-quantum algorithms into a fork of <u>Crypto++</u>, a C++ cryptography library.
 - <u>https://github.com/juliushekkala/cryptopp-pqc</u>
- The complex mathematical ideas behind the algorithms make implementation challenging

Quantum safe signing in smart vehicles

- Master thesis & conference paper by Sara Nikula
- "Quantum-Safe Signing of Notification Messages in Intelligent Transport Systems", Nikula, Halunen, and Vallivaara, in EAI AC3 2022
- In the intelligent transport system the signatures are created by using elliptic curve cryptography, which is not quantum safe
- We integrated three quantum-safe signature algorithms
 - CRYSTALS-Dilithium, FALCON and (Rainbow)
- Our results show that quantum-safe digital signature algorithms could be used in intelligent transport systems, with only moderate changes to performance in signing and verification

VTT

Continuation project: BlimPQC

- Preparations for new Co-Innovation project: BLimPQC: Beyond the Limits of Post-Quantum Cryptography
- Under Bittium's "veturi" ecosystem: Seamless and Secure Connectivity
- The project will answer to new challenges both in research and implementation
- Research: VTT, Aalto, Helsinki Uni. and Oulu Uni.
- Industry: Bittium, SSH, Xiphera, Jutel, Icareus, and Ericsson

Huoltovarmuuskeskus Försörjningsberedskapscentralen National Emergency Supply Agency

VTT

PQC for National Emergency Supply organisations

- "Kvanttilaskennan tietoturvavaikutuksiin varautuminen"
- Ongoing research project for HVK digipooli Jan 2024-May 2024, 30k€
- 1. Diagnosis
 - What is the stance towards PQC migration?
 - Risk assessment and inventory of crypto assets
- 2. Planning
 - PQC Roadmap
- 3. Execution
 - Cryptographic agility
 - Hybrid solutions

Quantum Communication

Alternative solution: Quantum Communication

- In quantum communication random symmetric keys are generated and shared securely without having to use asymmetric cryptography to secure the channel or having to communicate in person to exchange them.
- It provides a secure channel to send completely random keys.
- This can be done by quantum random number generation (QRNG) and quantum key distribution (QKD).

Quantum Key Distribution(QKD)

- Exploit quantum mechanics laws for establishing secure keys
- Single photons/weak coherent pulses transmission for generation of quantum keys
- Classical channel for encrypted messages
- Using One time Pad (OTP) encryption (or others encryption algorithm) Alice and Bob can share secret messages
- PQC and Quantum Communication can complement each other in PQC/QKD hybrid solutions

Potential applications

- Critical infrastructures (e.g. the Smart Grid)
- Financial institutions
- National defense (with major limitations)
- QKD networks deployed in
 - Asia: China, South Korea, Japan
 - Europe: Austria, Italy, UK, Switzerland
 - America: USA (DARPA, Los Alamos)
- Max key rate: <u>10 Mbps (10 Km)</u>
- Max distance: <u>405 km (6.5 bps)</u>

Cannot have both at the same time

Beijing

Hefei

National Quantum Communication Infrastructure in Finland NaQCI.fi

- **NaQCI.fi** is the Finnish consortium joining to the EuroQCI ("European Quantum Communication Infrastructure")
 - VTT, CINIA, ERVE, CSC, Coordinator: Kari Seppänen/VTT
- The expected outcome of the project is clear plans for a cost-effective deployment of the national quantum communication infrastructure
- The main goal of the NaQCI.fi project is to test and gain experience on QKD technology both for Metropolitan and Long-Distance links in Finland.
- Total funding 8.2 m€, duration 1.2023-6.2026

QUANTUM COMMUNICATION INFRASTRUCTURE FOR THE EU

All 27 EU Member States have signed a declaration agreeing to work together to explore how to build a quantum communication infrastructure (QCI) across Europe, boosting European capabilities in quantum technologies, cybersecurity and industrial competitiveness.

Secure Communication via Classical and Quantum Technologies

- Funded by **NATO** Science for Peace and Security (SPS) Programme
- Total budget 350 000 EUR and duration 2023-2025.
 - Kick-off at VTT on 30.3.2023
- NATO country Project Director: Dr. Rainer Steinwandt
 - Partner country Project Director: Visa Vallivaara
- Participants:
 - The University of Alabama in Huntsville, USA
 - VTT Technical Research Centre of Finland
 - Universidad Rey Juan Carlos, Spain
 - Academy of Sciences and University of Technology in Bratislava, Slovakia

Summary

Summary

- Quantum computing will some day break our current PKI, e.g. key exchange and digital signatures
- Harvest now decrypt later threat
- Quantum safe solutions exist and NIST PQC standard is coming
- In Finland we have studied and implemented PQC solutions
- Quantum communication is theoretically safe but not yet practical.

beyond the obvious

<u>Visa.vallivaara@vtt.fi</u> <u>Visa Vallivaara | LinkedIn</u>

15/03/2024

VTT – beyond the obvious